Global topology from an embedding
نویسندگان
چکیده
An embedding of chaotic data into a suitable phase space creates a diffeomorphism of the original attractor with the reconstructed attractor. Although diffeomorphic, the original and reconstructed attractors may not be topologically equivalent. In a previous work, we showed how the original and reconstructed attractors can differ when the original is three-dimensional and of genus-one type. In the present work, we extend this result to three-dimensional attractors of arbitrary genus. This result describes symmetries exhibited by the Lorenz attractor and its reconstructions. PACS number: 05.45.−a
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملA scheme over quasi-prime spectrum of modules
The notions of quasi-prime submodules and developed Zariski topology was introduced by the present authors in cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:={Qin qSpec(M) mid (Q:_R M)inSpec(R)}$. It is proved that $(X, mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $Mrightar...
متن کاملOn Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملThe Remarkable Simplicity of Very High Dimensional Data: Application of Model-Based Clustering
An ultrametric topology formalizes the notion of hierarchical structure. An ultrametric embedding, referred to here as ultrametricity, is implied by a hierarchical embedding. Such hierarchical structure can be global in the data set, or local. By quantifying extent or degree of ultrametricity in a data set, we show that ultrametricity becomes pervasive as dimensionality and/or spatial sparsity ...
متن کاملConstruction of Hexahedral Block Topology and its Decomposition to Generate Initial Tetrahedral Grids for Aerodynamic Applications
Making an initial tetrahedral grid for complex geometry can be a tedious and time consuming task. This paper describes a novel procedure for generation of starting tetrahedral cells using hexahedral block topology. Hexahedral blocks are arranged around an aerodynamic body to form a flow domain. Each of the hexahedral blocks is then decomposed into six tetrahedral elements to obtain an initial t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007